Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays.

نویسندگان

  • Yaguang Wei
  • Wenzhuo Wu
  • Rui Guo
  • Dajun Yuan
  • Suman Das
  • Zhong Lin Wang
چکیده

This article presents an effective approach for patterned growth of vertically aligned ZnO nanowire (NW) arrays with high throughput and low cost at wafer scale without using cleanroom technology. Periodic hole patterns are generated using laser interference lithography on substrates coated with the photoresist SU-8. ZnO NWs are selectively grown through the holes via a low-temperature hydrothermal method without using a catalyst and with a superior control over orientation, location/density, and as-synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass. This combined approach demonstrates a novel method of manufacturing large-scale patterned one-dimensional nanostructures on various substrates for applications in energy harvesting, sensing, optoelectronics, and electronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.

Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned...

متن کامل

Diameter-Controlled Vapor-Solid Epitaxial Growth and Properties of Aligned ZnO Nanowire Arrays

A facile, template-free method was used to grow large areas of well-aligned ZnO nanowire arrays on amorphous SiO2 substrates. The arrays are composed of vertically aligned, single-crystalline, wurtzitic [001] ZnO nanowires whose diameters were easily controlled by growth temperature, adjusted by changing the distance between the substrate and the precursor material in the growth chamber. A vapo...

متن کامل

Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst.

We report an approach for growing aligned ZnO nanowire arrays with a high degree control over size, orientation, dimensionality, uniformity, and possibly shape. Our method combines e-beam lithography and a low temperature hydrothermal method to achieve patterned and aligned growth of ZnO NWs at <100degreesC on general inorganic substrates, such as Si and GaN, without using catalyst. This approa...

متن کامل

Synthesis, characterization and electrical properties of hybrid Zn2GeO4–ZnO beaded nanowire arrays

We report the syntheses of vertically aligned, beaded zinc germinate (Zn2GeO4)/zinc oxide (ZnO) hybrid nanowire arrays via a catalyst-free approach. Vertically aligned ZnO nanowire is used as a lattice matching reactive template for the growth of Zn2GeO4/ZnO nanowire. The morphology and structure of the as-prepared samples were characterized using X-ray diffractometry (XRD), scanning electron (...

متن کامل

Growth and replication of ordered ZnO nanowire arrays on general flexible substrates

Vertically aligned and site controllable ZnO nanowire arrays have been synthesized and replicated via hydrothermal method on general flexible substrates. The replication was demonstrated for three generations. The morphology and density of the nanowire arrays could be optimized in the original generation by adjusting the chemical reaction parameters. The pattern of the original generation was i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 10 9  شماره 

صفحات  -

تاریخ انتشار 2010